Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.654
Filtrar
1.
Environ Sci Technol ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625742

RESUMO

Lead poisoning is globally concerning, yet limited testing hinders effective interventions in most countries. We aimed to create annual maps of county-specific blood lead levels in China from 1980 to 2040 using a machine learning model. Blood lead data from China were sourced from 1180 surveys published between 1980 and 2022. Additionally, regional statistical figures for 15 natural and socioeconomic variables were obtained or estimated as predictors. A machine learning model, using the random forest algorithm and 2973 generated samples, was created to predict county-specific blood lead levels in China from 1980 to 2040. Geometric mean blood lead levels in children (i.e., age 14 and under) decreased significantly from 104.4 µg/L in 1993 to an anticipated 40.3 µg/L by 2040. The number exceeding 100 µg/L declined dramatically, yet South Central China remains a hotspot. Lead exposure is similar among different groups, but overall adults and adolescents (i.e., age over 14), females, and rural residents exhibit slightly lower exposure compared to that of children, males, and urban residents, respectively. Our predictions indicated that despite the general reduction, one-fourth of Chinese counties rebounded during 2015-2020. This slower decline might be due to emerging lead sources like smelting and coal combustion; however, the primary factor driving the decline should be the reduction of a persistent source, legacy gasoline-derived lead. Our approach innovatively maps lead exposure without comprehensive surveys.

2.
Opt Express ; 32(7): 12200-12212, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571050

RESUMO

As an integral component of the laser interferometry measurement system, the tilt-to-length (TTL) coupling noise inside the telescope stands out as a critical noise factor that requires meticulous consideration. In the TianQin project, the non-geometric TTL-coupled noise inside the telescope should be less than 0.22 pm/Hz1/2. Additionally, the wavefront aberration RMS at the small pupil of the telescope needs to be better than 0.0065 λ. These requirements set for the telescope are exceptionally stringent. To address this challenge, this study aims to relax the wavefront aberration requirements by mitigating non-geometric TTL coupling noise, while ensuring the non-geometric TTL coupling noise remains below 0.22 pm/Hz1/2. By controlling the coupling aberration proportion, the wavefront aberration RMS at the small pupil of the telescope can be relaxed to 0.014 λ. Alternatively, optimizing the Gaussian beam waist radius can relax the wavefront aberration RMS to 0.016 λ. By simultaneously utilizing two optimization methods, the wavefront aberration at the small pupil of the telescope can be reduced to 0.033 λ, resulting in an impressive success rate of 91.15% in meeting the noise requirements.

3.
Beilstein J Org Chem ; 20: 661-671, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590540

RESUMO

Herein, we report a visible-light-mediated palladium-catalyzed three-component radical-polar crossover carboamination of 1,3-dienes or allenes with diazo esters and amines, affording unsaturated γ- and ε-amino acid derivatives with diverse structures. In this methodology, the diazo compound readily transforms into a hybrid α-ester alkylpalladium radical with the release of dinitrogen. The radical intermediate selectively adds to the double bond of a 1,3-diene or allene, followed by the allylpalladium radical-polar crossover path and selective allylic substitution with the amine substrate, thereby leading to a single unsaturated γ- or ε-amino acid derivative. This approach proceeds under mild and simple reaction conditions and shows high functional group tolerance, especially in the incorporation of various bioactive molecules. The studies on scale-up reactions and diverse derivatizations highlight the practical utility of this multicomponent reaction protocol.

4.
Bone Res ; 12(1): 24, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594260

RESUMO

Ossification of the Posterior Longitudinal Ligament (OPLL) is a degenerative hyperostosis disease characterized by the transformation of the soft and elastic vertebral ligament into bone, resulting in limited spinal mobility and nerve compression. Employing both bulk and single-cell RNA sequencing, we elucidate the molecular characteristics, cellular components, and their evolution during the OPLL process at a single-cell resolution, and validate these findings in clinical samples. This study also uncovers the capability of ligament stem cells to exhibit endothelial cell-like phenotypes in vitro and in vivo. Notably, our study identifies LOXL2 as a key regulator in this process. Through gain-and loss-of-function studies, we elucidate the role of LOXL2 in the endothelial-like differentiation of ligament cells. It acts via the HIF1A pathway, promoting the secretion of downstream VEGFA and PDGF-BB. This function is not related to the enzymatic activity of LOXL2. Furthermore, we identify sorafenib, a broad-spectrum tyrosine kinase inhibitor, as an effective suppressor of LOXL2-mediated vascular morphogenesis. By disrupting the coupling between vascularization and osteogenesis, sorafenib demonstrates significant inhibition of OPLL progression in both BMP-induced and enpp1 deficiency-induced animal models while having no discernible effect on normal bone mass. These findings underscore the potential of sorafenib as a therapeutic intervention for OPLL.


Assuntos
Ligamentos Longitudinais , Ossificação do Ligamento Longitudinal Posterior , Animais , Ligamentos Longitudinais/metabolismo , Osteogênese/genética , Sorafenibe/farmacologia , Ossificação do Ligamento Longitudinal Posterior/genética , Diferenciação Celular
5.
Fish Shellfish Immunol ; : 109568, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636741

RESUMO

Pompano fishes have been widely farmed worldwide. As a representative commercial marine species of the Carangidae family, the golden pompano (Trachinotus blochii) has gained significant popularity in China and worldwide. However, because of rapid growth and high-density aquaculture, the golden pompano has become seriously threatened by various diseases. Cell lines are the most cost-effective resource for in vitro studies and are widely used for physiological and pathological research owing to their accessibility and convenience. In this study, we established a novel immortal cell line, GPF (Golden pompano fin cells). GPF has been passaged over 69 generations for 10 months. The morphology, adhesion and extension processes of GPF were evaluated using light and electron microscopy. GPF cells were passaged every 3 days with L-15 containing 20% fetal bovine serum (FBS) at 1:3. The optimum conditions for GPF growth were 28 °C and a 20% FBS concentration. DNA sequencing of 18S rRNA and mitochondrial 16S rRNA confirmed that GPF was derived from the golden pompano. Chromosomal analysis revealed that the number pattern of GPF was 48 chromosomes. Transfection experiments demonstrated that GPF could be utilized to express foreign genes. Furthermore, heavy metals (Cd, Cu, and Fe) exhibited dose-dependent cytotoxicity against GPF. After polyinosinic-polycytidylic acid (poly I:C) treatment, transcription of the retinoic acid-inducible gene I-like receptor (RLR) pathway genes, including mda5, mita, tbk1, irf3, and irf7 increased, inducing the expression of interferon (IFN) and anti-viral proteins in GPF cells. In addition, lipopolysaccharide (LPS) stimulation up-regulated the expression of inflammation-related factors, including myd88, irak1, nfκb, il1ß, il6, and cxcl10 expression. To the best of our knowledge, this is the first study on the immune response signaling pathways of the golden pompano using an established fin cell line. In this study, we describe a preliminary investigation of the GPF cell line immune response to poly I:C and LPS, and provide a more rapid and efficient experimental material for research on marine fish immunology.

6.
Ecol Evol ; 14(4): e11225, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584774

RESUMO

A new species of Papaveraceae, Corydalis sunhangii, in the section Trachycarpae, is described and illustrated from Nyingchi City, Xizang, China. The new species has some resemblance to Corydalis kingdonis, but differs by radical leaves prominent, usually several, blade tripinnate (vs. insignificant, few, blade bi- to triternate); cauline leaf usually one, much smaller than radical leaves, usually situated in lower half of stem (vs. usually two, larger than radical leaves, concentrated in upper third of stem); racemes densely 13-35-flowered (vs. rather lax, 4-11-flowered); claw of lower petal shallowly saccate (vs. very prominently and deeply saccate); capsule oblong, with raised lines of dense papillae (vs. broadly obovoid, smooth). Phylogenetic analysis, based on 68 protein-coding plastid genes of 49 samples, shows that C. sunhangii is not closely related to any hitherto described species, which is consistent with our morphological analysis.

7.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587446

RESUMO

Sensor technology plays a pivotal role in various aspects of the petroleum industry. The conventional quartz crystal microbalance (QCM) liquid-phase detection method fails to discern the viscosity and density of solutions separately, rendering it incapable of characterizing the properties of unknown liquid solutions. This presents a formidable challenge to the application of QCM in the petroleum industry. In this study, we aim to assess the feasibility of exclusively utilizing a single QCM sensor for liquid viscosity measurements. Validation experiments were conducted, emphasizing the influence of temperature and solution concentration on the viscosity measurement results. The results indicate that the QCM liquid viscosity response model can achieve viscosity measurements in the temperature range of 20 to 60 °C and concentration range of 10%-95% glycerol solution using a single QCM, with a maximum error of 7.32%. Simultaneously, with the objective of enhancing the model's measurement precision, as an initial investigation, we employed a backpropagation neural network combined with genetic algorithm (to optimize the measurement data. The results demonstrate a substantial improvement in the measurement accuracy of the QCM sensor, with a root mean square error of 3.89 and an absolute error of 3.07% in predicting viscosity values. The purpose of this research was to extend neural networks into the evaluation system of QCM sensors for assessing the viscosity properties of liquid in the oil industry, providing insights into the application of QCM sensors in the petroleum industry for viscosity measurement and improving measurement accuracy.

8.
Parasit Vectors ; 17(1): 178, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576040

RESUMO

BACKGROUND: To successfully replicate within the host cell, Toxoplasma gondii employs several mechanisms to overcome the host cell defenses and mitigate the harmful effects of the free radicals resulting from its own metabolic processes using effectors such as thioredoxin proteins. In this study, we characterize the location and functions of a newly identified thioredoxin in T. gondii, which was named Trx4. METHODS: We characterized the functional role of Trx4 in T. gondii Type I RH and Type II Pru strains by gene knockout and studied its subcellular localization by endogenous protein HA tagging using CRISPR-Cas9 gene editing. The enzyme-catalyzed proximity labeling technique, the TurboID system, was employed to identify the proteins in proximity to Trx4. RESULTS: Trx4 was identified as a dense granule protein of T. gondii predominantly expressed in the parasitophorous vacuole (PV) and was partially co-localized with GRA1 and GRA5. Functional analysis showed that deletion of trx4 markedly influenced the parasite lytic cycle, resulting in impaired host cell invasion capacity in both RH and Pru strains. Mutation of Trx domains in Trx4 in RH strain revealed that two Trx domains were important for the parasite invasion. By utilizing the TurboID system to biotinylate proteins in proximity to Trx4, we identified a substantial number of proteins, some of which are novel, and others are previously characterized, predominantly distributed in the dense granules. In addition, we uncovered three novel proteins co-localized with Trx4. Intriguingly, deletion of trx4 did not affect the localization of these three proteins. Finally, a virulence assay demonstrated that knockout of trx4 resulted in a significant attenuation of virulence and a significant reduction in brain cyst loads in mice. CONCLUSIONS: Trx4 plays an important role in T. gondii invasion and virulence in Type I RH strain and Type II Pru strain. Combining the TurboID system with CRISPR-Cas9 technique revealed many PV-localized proximity proteins associated with Trx4. These findings suggest a versatile role of Trx4 in mediating the processes that occur in this distinctive intracellular membrane-bound vacuolar compartment.


Assuntos
Toxoplasma , Animais , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Antígenos de Protozoários/genética , Virulência/genética , Fatores Imunológicos/metabolismo , Tiorredoxinas/genética
9.
Vaccines (Basel) ; 12(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38543921

RESUMO

Compared with the traditional vaccine produced in embryonated chicken eggs, cell-based manufacturing represented by the Madin-Darby canine kidney (MDCK) cell line has a larger production scale and reduces the risk of egg shortage in a pandemic. Establishing a culture system that enables high production of the influenza virus is a key issue in influenza vaccine production. Here, a serum-free suspension culture of MDCK (sMDCK) cells was obtained from adherent MDCK (aMDCK) cells by direct adaptation. Viral infection experiments showed that viral yields of influenza A/B virus in sMDCK cells were higher than in aMDCK cells. Transcriptome analysis revealed that numerous interferon-stimulated genes (ISGs) exhibited reduced expression in sMDCK cells. To further clarify the mechanism of high viral production in sMDCK cells, we demonstrated the antiviral role of RIG-I and IFIT3 in MDCK cells by knockdown and overexpression experiments. Furthermore, suppression of the JAK/STAT pathway enhances the viral accumulation in aMDCK cells instead of sMDCK cells, suggesting the reduction in the JAK/STAT pathway and ISGs promotes viral replication in sMDCK cells. Taken together, we elucidate the relationship between the host innate immune response and the high viral productive property of sMDCK cells, which helps optimize cell production processes and supports the production of cell-based influenza vaccines.

10.
Angew Chem Int Ed Engl ; : e202403844, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518115

RESUMO

Paired redox-neutral electrolysis offers an attractive green platform for organic synthesis by avoiding sacrificial oxidants and reductants. Carboxylates are non-toxic, stable, inexpensive, and widely available, making them ideal nucleophiles for C-C cross-coupling reactions. Here, we report the electro/Ni dual-catalyzed redox-neutral decarboxylative C(sp3)-C(sp2) cross-coupling reactions of pristine carboxylates with aryl bromides. At a cathode, a NiII(Ar)(Br) intermediate is formed through the activation of Ar-Br bond by a NiI-bipyridine catalyst and subsequent reduction. At an anode, the carboxylates, including amino acid, benzyl carboxylic acid, and 2-phenoxy propionic acid, undergo oxidative decarboxylation to form carbon-based free radicals. The combination of NiII(Ar)(Br) intermediate and carbon radical results in the formation of C(sp3)-C(sp2) cross-coupling products. The adaptation of this electrosynthesis method to flow synthesis and valuable molecule synthesis was demonstrated. The reaction mechanism was systematically studied through electrochemical voltammetry and density functional theory (DFT) computational studies. The relationships between the electrochemical properties of carboxylates and the reaction selectivity were revealed. The electro/Ni dual-catalyzed cross-coupling reactions described herein expand the chemical space of paired electrochemical C(sp3)-C(sp2) cross-coupling and represent a promising method for the construction of the C(sp3)-C(sp2) bonds because of the ubiquitous carboxylate nucleophiles and the innate scalability and flexibility of electrochemical flow-synthesis technology.

11.
Mucosal Immunol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493955

RESUMO

Eosinophils are key effector cells mediating airway inflammation and exacerbation in patients with severe eosinophilic asthma. They are present in increased numbers and activation states in the airway mucosa and lumen. Interleukin-5 (IL-5) is the key eosinophil growth factor that is thought to play a role in eosinophil priming and activation. However, the mechanism of these effects is still not fully understood. The anti-IL-5 antibody mepolizumab reduces eosinophil counts in the airway modestly but has a large beneficial effect on the frequency of exacerbations of severe eosinophilic asthma, suggesting that reduction in eosinophil priming and activation is of central mechanistic importance. In this study, we used the therapeutic effect of mepolizumab and single-cell ribonucleic acid sequencing to investigate the mechanism of eosinophil priming and activation by IL-5. We demonstrated that IL-5 is a dominant driver of eosinophil priming and plays multifaceted roles in eosinophil function. It enhances eosinophil responses to other stimulators of migration, survival, and activation by activating phosphatidylinositol-3-kinases, extracellular signal-regulated kinases, and p38 mitogen-activated protein kinases signaling pathways. It also enhances the pro-fibrotic roles of eosinophils in airway remodeling via transforming growth factor-ß pathway. These findings provide a mechanistic understanding of eosinophil priming in severe eosinophilic asthma and the therapeutic effect of anti-IL-5 approaches in the disease.

12.
Int J Biol Sci ; 20(5): 1652-1668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481812

RESUMO

Liquid-liquid phase separation (LLPS) is a physiological phenomenon that parallels the mixing of oil and water, giving rise to compartments with diverse physical properties. Biomolecular condensates, arising from LLPS, serve as critical regulators of gene expression and control, with a particular significance in the context of malignant tumors. Recent investigations have unveiled the intimate connection between LLPS and cancer, a nexus that profoundly impacts various facets of cancer progression, including DNA repair, transcriptional regulation, oncogene expression, and the formation of critical membraneless organelles within the cancer microenvironment. This review provides a comprehensive account of the evolution of LLPS from the molecular to the pathological level. We explore the mechanisms by through which biomolecular condensates govern diverse cellular physiological processes, encompassing gene expression, transcriptional control, signal transduction, and responses to environmental stressors. Furthermore, we concentrate on potential therapeutic targets and the development of small-molecule inhibitors associated with LLPS in prevalent clinical malignancies. Understanding the role of LLPS and its interplay within the tumor milieu holds promise for enhancing cancer treatment strategies, particularly in overcoming drug resistance challenges. These insights offer innovative perspectives and support for advancing cancer therapy.


Assuntos
Neoplasias , 60422 , Humanos , Neoplasias/genética , Neoplasias/terapia , Reparo do DNA , Junções Comunicantes , Oncogenes , Microambiente Tumoral/genética
13.
Hepatol Commun ; 8(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497929

RESUMO

BACKGROUND: Liver cancer is one of the most lethal malignancies for humans. The treatment options for advanced-stage liver cancer remain limited. A new treatment is urgently needed to reduce the mortality of the disease. METHODS: In this report, we developed a technology for mutation site insertion of a suicide gene (herpes simplex virus type 1- thymidine kinase) based on type II CRISPR RNA-guided endonuclease Cas9-mediated genome editing to treat liver cancers. RESULTS: We applied the strategy to 3 different mutations: S45P mutation of catenin beta 1, chromosome breakpoint of solute carrier family 45 member 2-alpha-methylacyl-CoA racemase gene fusion, and V235G mutation of SAFB-like transcription modulator. The results showed that the herpes simplex virus type 1-thymidine kinase insertion rate at the S45P mutation site of catenin beta 1 reached 77.8%, while the insertion rates at the breakpoint of solute carrier family 45 member 2 - alpha-methylacyl-CoA racemase gene fusion were 95.1%-98.7%, and the insertion at V235G of SAFB-like transcription modulator was 51.4%. When these targeting reagents were applied to treat mouse spontaneous liver cancer induced by catenin beta 1S45P or solute carrier family 45 member 2-alpha-methylacyl-CoA racemase, the mice experienced reduced tumor burden and increased survival rate. Similar results were also obtained for the xenografted liver cancer model: Significant reduction of tumor volume, reduction of metastasis rate, and improved survival were found in mice treated with the targeting reagent, in comparison with the control-treated groups. CONCLUSIONS: Our studies suggested that mutation targeting may hold promise as a versatile and effective approach to treating liver cancers.


Assuntos
Herpesvirus Humano 1 , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Timidina Quinase/genética , Sistemas CRISPR-Cas/genética , Herpesvirus Humano 1/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Cateninas , Mutação/genética
14.
J Agric Food Chem ; 72(12): 6565-6574, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498316

RESUMO

Uncontrolled hyperuricemia often leads to the development of hyperuricemic nephropathy (HN), characterized by excessive inflammation and oxidative stress. Piperine, a cinnamic acid alkaloid, possesses various pharmacological activities, such as antioxidant and anti-inflammatory effects. In this study, we intended to investigate the protective effects of piperine on adenine and potassium oxonate-induced HN mice and a uric-acid-induced injury model in renal tubular epithelial cells (mRTECs). We observed that treatment with piperine for 3 weeks significantly reduced serum uric acid levels and reversed kidney function impairment in mice with HN. Piperine (5 µM) alleviated uric acid-induced damage in mRTECs. Moreover, piperine inhibited transporter expression and dose-dependently inhibited the activity of both transporters. The results revealed that piperine regulated the AKT/mTOR signaling pathway both in vivo and in vitro. Overall, piperine inhibits URAT1/GLUT9 and ameliorates HN by inhibiting the AKT/mTOR pathway, making it a promising candidate for patients with HN.


Assuntos
Alcaloides , Benzodioxóis , Hiperuricemia , Piperidinas , Alcamidas Poli-Insaturadas , Humanos , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , Ácido Úrico/metabolismo , Rim/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo
15.
Mol Psychiatry ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459194

RESUMO

Cognitive and behavioral rigidity are observed in various psychiatric diseases, including in autism spectrum disorder (ASD). However, the underlying mechanism remains to be elucidated. In this study, we found that neuroligin-3 (NL3) R451C knockin mouse model of autism (KI mice) exhibited deficits in behavioral flexibility in choice selection tasks. Single-unit recording of medium spiny neuron (MSN) activity in the nucleus accumbens (NAc) revealed altered encoding of decision-related cue and impaired updating of choice anticipation in KI mice. Additionally, fiber photometry demonstrated significant disruption in dynamic mesolimbic dopamine (DA) signaling for reward prediction errors (RPEs), along with reduced activity in medial prefrontal cortex (mPFC) neurons projecting to the NAc in KI mice. Interestingly, NL3 re-expression in the mPFC, but not in the NAc, rescued the deficit of flexible behaviors and simultaneously restored NAc-MSN encoding, DA dynamics, and mPFC-NAc output in KI mice. Taken together, this study reveals the frontostriatal circuit dysfunction underlying cognitive inflexibility and establishes a critical role of the mPFC NL3 deficiency in this deficit in KI mice. Therefore, these findings provide new insights into the mechanisms of cognitive and behavioral inflexibility and potential intervention strategies.

16.
Appl Opt ; 63(7): 1815-1821, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437285

RESUMO

The telescope is vital for accurate gravitational wave detection in the TianQin project. It must meet criteria like a geometric tilt-to-length (TTL) coupling noise c o e f f i c i e n t≤0.02√2n m/µr a d and wavefront R M S≤λ/30. Analyzing the pupil aberration's impact on geometric TTL noise, we devised an optimization method using the chief ray spot diagram's standard deviation. Implementing this in Zemax with a ZPL macro, we designed an optical system meeting TianQin's requirements. The system has a maximum geometric TTL noise coefficient of 0.0250 nm/µrad over the science FOV and a wavefront RMS of 0.0111λ, confirming the method's feasibility.

17.
Appl Opt ; 63(6): 1488-1494, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38437360

RESUMO

The optical path length stability of the off-axis four-reflection telescope is one of the key technical indicators for the TianQin gravitational wave detection system. In the MHz observation band, the telescope must exhibit an optical path length stability of 0.4p m/H z 1/2. As a feasible solution, the optical path length stability measurement of the off-axis four-reflection telescope based on the Pound-Drever-Hall (PDH) technique imposes stringent requirements on the alignment of the off-axis resonant cavity (ORC). Taking the off-axis two-reflection prototype as the research object, we propose a Monte Carlo analysis-based method for ORC alignment precision analysis. By considering misalignment as an intermediate function, we establish a relationship between the coupling efficiency of the ORC and the wavefront aberration of the telescope. The research results show that by considering the combined effects of multiple misalignment couplings of the primary and secondary mirrors, when the detected telescope wavefront aberration is better than 0.068λ (λ=1064n m) with a probability of 98%, the ORC coupling efficiency can achieve greater than 40% with a probability of 97.13%, which can be used as the main reference indicator for system misalignment analysis. This method simplifies the alignment difficulty of the target under test and can provide alignment reference for subsequent resonant cavities with internal off-axis telescopes.

18.
Food Funct ; 15(7): 3479-3495, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38456359

RESUMO

Objective: The optimal probiotic supplementation in pregnant women has not been thoroughly evaluated. By employing a network meta-analysis (NMA) approach, we compared the effectiveness of different probiotic supplementation strategies for pregnant women. Methods: A comprehensive search across multiple databases was performed to identify studies comparing the efficacy of probiotic supplements with each other or the control (placebo) among pregnant women. Results: This NMA, including 32 studies, systematically evaluated 6 probiotic supplement strategies: Lactobacillus, Lacticaseibacillus rhamnosus and Bifidobacterium (LRB), Lactobacillus acidophilus and Bifidobacterium (LABB), Lactobacillus acidophilus, Lacticaseibacillus casei, and Bifidobacterium bifidum (LLB), multi-combination of four probiotics (MP1), and multi-combination of six or more probiotics (MP2). Among these strategies, LLB, MP1, and MP2 all contain LABB. The NMA findings showed that MP1 was the most effective in reducing fasting blood sugar (FBS) (surface under the cumulative ranking curve [SUCRA]: 80.5%). In addition, MP2 was the most efficacious in lowering the homeostasis model assessment of insulin resistance (HOMA-IR) (SUCRA: 89.1%). LABB was ranked as the most effective in decreasing low-density lipoprotein cholesterol (LDLC) (SUCRA: 95.5%), total cholesterol (TC) (SUCRA: 95.5%), and high-sensitivity C-reactive protein (hs-CRP) (SUCRA: 94.8%). Moreover, LLB was ranked as the most effective in raising total antioxidant capacity (TAC) (SUCRA: 98.5%). Conclusion: Multi-combination of probiotic strains, especially those strategies containing LABB, may be more effective than a single probiotic strain in glycolipid metabolism, inflammation, and oxidative stress of pregnant women.


Assuntos
Gestantes , Probióticos , Humanos , Feminino , Gravidez , Glicemia/metabolismo , Lactobacillus acidophilus/metabolismo , Estresse Oxidativo , Inflamação , LDL-Colesterol/metabolismo
19.
Am J Pathol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537933

RESUMO

Hepatocellular carcinoma (HCC) is one of the most fatal malignancies. Early diagnosis of HCC is crucial in reducing the risk for mortality. This study analyzed a panel of nine fusion transcripts in serum samples from 61 HCC patients and 75 patients with non-HCC conditions, using real-time quantitative RT-PCR. Seven of the nine fusions were frequently detected in HCC patients: MAN2A1-FER (100%), SLC45A2-AMACR (62.3%), ZMPSTE24-ZMYM4 (62.3%), PTEN-NOLC1 (57.4%), CCNH-C5orf30 (55.7%), STAMBPL1-FAS (26.2%), and PCMTD1-SNTG1 (16.4%). Machine-learning models were constructed based on serum fusion-gene levels to predict HCC in the training cohort, using the leave-one-out cross-validation approach. One machine-learning model, called the four fusion genes logistic regression model (MAN2A1-FER≤40, CCNH-C5orf30≤38, SLC45A2-AMACR≤41, and PTEN-NOLC1≤40), produced accuracies of 91.5% and 83.3% in the training and testing cohorts, respectively. When serum α-fetal protein level was incorporated into the machine-learning model, a two fusion gene (MAN2A1-FER≤40, CCNH-C5orf30≤38) + α-fetal protein logistic regression model was found to generate an accuracy of 94.8% in the training cohort. The same model generated 95% accuracy in both the testing and combined cohorts. Cancer treatment was associated with reduced levels of most of the serum fusion transcripts. Serum fusion-gene machine-learning models may serve as important tools in screening for HCC and in monitoring the impact of HCC treatment.

20.
J Hazard Mater ; 467: 133615, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325096

RESUMO

Accumulation of plastic debris in the environment is a matter of global concern. As plastic ages, it generates microplastic (MP) particles with high mobility. Understanding how MPs are generated is crucial to controlling this emerging contaminant. In this study, we utilized high-density polyethylene (HDPE) plastic gauze, collected from urban settings, as a representative example of plastic waste. The plastic gauze was subjected to various aging conditions, including freeze-thaw cycling, mechanical abrasion, and UV irradiation. Following aging, the plastic gauze was rinsed with water, and the number of generated MPs were quantified. It was found that aged plastic gauze generated up to 334 million MP particles per m2 (> 10 µm) during rinsing, a number two orders of magnitude higher than unaged plastic. Fragmentation occurred in two dimensions for bulk MPs of all morphotypes. However, specific aging approaches (i.e., mechanical abrasion and UV irradiation) generated spheres and fibers via pseudo-3D fragmentation. Additionally, changes in molecular weight, size distribution, and surface oxidation characteristics unveiled a complex pattern (i.e., irregular changes with exposure time). This complexity underscores the intricate nature of plastic debris aging processes in the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...